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XYZ, Pc states: strong evidence for tetraquark & pentaquark states,
         composed of both light and heavy quarks

Why do we need heavy quarks to see tetraquark states?
Jaffe ’79…Schechter…Close…Tornqvist…Maiani…Giacosa….Peleaz ’15: 
“the” σ meson is “a” tetraquark (diquark anti-diquark).  But situation murky….

Punchline: tetraquarks must be included to understand the phase diagram of QCD 
     (versus quark mass, plane of temperature T and baryon chemical potential μ)

Tetraquarks: for three (not two) flavors of very light quarks, 
     tetraquarks may generate a second chiral phase transition

For QCD, in the plane of T & μ plane: 
     direct connection between tetraquarks and color superconductivity

in effective modesl, need tetraquarks to determine the Critical EndPoint



Tetraquarks for two light flavors:
meh, fuh gedda ‘boud it



Chiral symmetry for two flavors

Use φ, complex 4-component vector
Linear σ model for exact χ symmetry:

With Gcl , η degenerate with π .  With axial anomaly, η splits from massless π
Directly induced by instantons + …

Quantum mechanically, axial anomaly reduces U(1)A  -> Z(2)A  : φ → (−) φ
Simplest term which is only Z(2)A  invariant:
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Classically, chiral symmetry Gcl  = SU(2)L x SU(2)R x U(1)A  = O(4) x O(2)   



Diquarks and tetraquarks for two flavors

Jaffe ’79: most attractive channel for 
quark-quark scattering is antisym. in both flavor and color.

Color: 3 x 3 = 3 (antisym) + 6 (sym)

Two flavors: 2 x 2 = 1 (antisym) + 3 (sym)

For two flavors diquark is a color triplet, flavor singlet,

�A
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(A, B, C = color; a, b = flavor) Also χR.  χL and  χR singlets under Z(2)A.  

One complex valued tetraquark field:
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Sigma models and tetraquarks for two flavors

The tetraquark field ζ is a singlet under flavor and Z(2)A.  

Split complex ζ into its real and imaginary parts, ζr and ζi.  

QCD is even under parity, so only even powers of ζi can appears, forget ζi.

But any powers of ζr can! 
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Hence ⟨ζr ⟩ is always nonzero!

Couplings to φ start with U(1)A inv.: V⇣� =  ⇣ �⇤ · �+ . . .

The tetraquark ζr is just a massive field with a v.e.v. : boring!



Chiral transition for two flavors
Assume anomaly is large up to Tχ .  V� =
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2
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T = 0: m2 < 0, 
⟨φ⟩ ≠ 0      =>

T ≫ fπ: m2 > 0, 
⟨φ⟩ = 0      =>

T= Tχ: m2 = 0, ⟨φ⟩ = 0 ⇓

Chiral transition second order,
m2 = 0 => infinite correlation length
O(4) universality class.

Tetraquark field just doesn’t matter:
massive field with cubic couplings



Tetraquarks for three light flavors:
must be included



Chiral symmetry, three flavors

Lqk = q 6D q = qL 6D qL + qR 6D qR , qL,R =
1± �5

2
q

Quark Lagrangian

qL ! e�i↵/2 UL qL , qR ! e+i↵/2 UR qR

Classical Gcl = SU(3)L x SU(3)R x U(1)A :

Order parameter for χ symmetry breaking (a, b… = flavor;  A,B… = color)

Axial anomaly reduces U(1)A to Z(3)A .
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σ models for χ symmetry

U(1)A invariant terms:

Drop last term, λO(18) ~ λ/50.
χ sym. broken by background field: V0
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To split the η’  from the π, K, & η, 
add Z(3)A invariant term VA =  (det�+ c.c.)

Example: SU(3) symmetric case, H  = h 1. 
JP = 0− : octet  π = K = η & singlet η’.  JP = 0+: octet a0 = κ = σ8 & singlet σ
h ≠ 0 so π’s massive .  Satisfy (like ’t Hooft ’86):
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The anomaly moves η’ up from the π, but also moves singlet σ down from the a0!
Light σ is a problem for σ models
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Tetraquarks for three flavors

Three flavors: 3 x 3 = 3 + 6 .  
Diquark field flavor anti-triplet, 3 �aA

L = ✏abc ✏ABC (qbBL )T C�1 qcCL

LR tetraquark field ζ transforms identically to 
Φ under Gχ = SU(3)L x SU(3)R 

Under U(1)A, Φ has charge +1, ζ charge -2.
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R )⇤ �bA
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Since ζ & Φ in same representation of Gχ, 
direct mixing term.  Z(3)A invariant:
Black, Fariborz, Schechter ph/9808415 + ….; 
’t Hooft, Isidori, Maiani, Polosa 0801.2288 + ….
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An extra dozen couplings.  
e.g., U(1)A inv. cubic term: V1
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“Mirror” model, T = 0
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Spectrum : � = ⇡,K, ⌘, ⌘0; a0,,�8,�0 ; ⇣ = e⇡, eK, e⌘, e⌘0;ea0, e, e�8, e�0.

General model has 20 couplings:

            Fariborz, Jora, & Schechter: ph/0506170; 0707.0843; 0801.2552.  Pelaez, 1510.00653

Instead study “mirror” model, where Φ and ζ start with identical couplings

Assume only ζΦ coupling is mass term: VA
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Simple, because mass only mixes: ⇡ $ e⇡ , K $ eK . . .



Spectrum of the mirror model

In the chiral limit, the mass eigenstates: (need to assume                )

a0,ea0 = m2 + �+ 6��2 ± em2 ; �0, e� = m2 � 2�+ 6��2 ± em2

⇡, e⇡ = 0 , �2 em2 ; ⌘0, e⌘ 0 = 3� , 3�� 2 em2

All states are mixtures of Φ and ζ.  Of course 8 Goldstone bosons.
Satisfy generalized ’t Hooft relation
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Since every multiplet is doubled, this can easily be satisfied (unlike if just one). 

Even with same couplings, all masses are split by the mixing term.

At nonzero T, the thermal masses of the Φ and ζ cannot be equal!

em2 < 0



Chiral transition for three flavors, no tetraquark

Cubic terms always generate 
first order transitions.

T = 0: m2 < 0, 
⟨φ⟩ ≠ 0      =>

T ≫ fπ: m2 > 0, 
⟨φ⟩ = 0      =>

T= Tχ: cannot flatten the potential =>

At Tχ, two degenerate minima,
with barrier between them.
Transition is first order.
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With tetraquarks, maybe two chiral transitions
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In chiral limit, may have have two chiral                  
                               phase transitions.  =>
At first, both jump, remain nonzero.
At second, both jump to zero.

<= Also possible to have single chiral
phase transition, tetraquark crossover

←⟨φ⟩
⟨ζ⟩→

←⟨φ⟩
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”Columbia” phase diagram for light quarks

ms

mu,d

I
II

C = crossover

I = one
chiral transition

II = two chiral transitions

Lattice: chiral transition crossover in QCD
If two chiral phase transitions for three massless flavors, persists for nonzero mass
Implies new phase diagram in the plane of mu = md versus ms:

X = QCD, crossover                    

←critical line

critical line→

critical line→

tricritical point→



Tetraquarks in the plane of T and μ

Diquark fields are identical to the order parameters for color superconductivity.
Tetraquark condensate  = gauge invariant square of CS condensate.  Suggests:

T

µB

χ

χ~

↓chiral crossover line

↑tetraquark
  crossover

↓ color superconducting line

Line for chiral crossover might end, meet line for first order chiral transition at
Critical EndPoint (CEP).  Massless σ at CEP.   Rajagopal, Shuryak & Stephanov, ’99
             
In effective models, to find the CEP, must include tetraquarks: need the right σ!

Critical EndPoint? 

←1st order chiral line

T↑

μ→

❋



Need tetraquarks to find the critical endpoint
Kovacs, Szep, & Wolf, 1601.05291: Use linear σ model + Polyakov loop model
And add vector mesons (good!).  But do not include tetraquarks.
Find a critical endpoint (CEP), but T so low, CEP would have been seen exp’y!

T↑

μbaryon→

❋←CEP



Using the lattice to fix the σ model?
Briceno, Dudek, Edwards, & Wilson (Hadron Spectrum Coll.), 1607.05900
First study of the σ meson on the lattice with light, dynamical quarks
mπ = 391 MeV: σ bound state resonance just below ππ threshold
mπ = 236 MeV: σ broad resonance, well above ππ threshold

Perhaps: fix the parameters of σ model plus tetraquarks from the lattice
Very difficult, but of direct relevance for the CEP.
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Four flavors, three colors: hexaquarks

Diquark 2-index antisymmetric 
tensor: �(ab)A

L = ✏abcd ✏ABC (qcBL )T C�1 qdCL

So LR tetraquark is same: ⇣(ab),(cd) =
⇣
�(ab)A
R

⌘†
�(cd)A
L

Tetraquark couples to usual Φ through cubic, quadratic terms, so what.

Instead, consider triquark field:

Triquark is a color singlet, fundamental rep. in flavor.  
Hence a LR hexaquark field is just like the usual Φ,
and mixes directly with it.

⇠ab = (�a
R)

† �b
L

�a
L = ✏abcd ✏ABC qbAL (qcBL )T C�1 qdCL

Analysis for general numbers of flavors and colors is not trivial.  
Like color superconductivity.


